
InSAR Scientific
Computing Environment
Eric Gurrola1, Paul A. Rosen1, Gian Franco Sacco1, Walter
Seliga1, Howard Zebker2, Mark Simons3, David Sandwell4

1Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr

Pasadena, CA 91109 USA
2Stanford University

3California Institute of Technology
4Scripps Institution of Oceanography

Abstract⎯We have developed the main components of a new
flexible and extensible computing environment for geodetic
image processing for Synthetic Aperture Radar (SAR) sensors to
enable scientists to reduce measurements directly from Level-0 or
Level-1 radar data up to Level-3 data products. The
Interferometric SAR (InSAR) Scientific Computing Environment
(ISCE) can process data from the ALOS, ERS, EnviSAT, Cosmo-
SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X
platforms; with its flexible design, it can be extended with
raw/meta data parsers to enable it to work with radar data from
other platforms. The NRC Decadal Survey-recommended
DESDynI mission would deliver directly to the science
community data of unprecedented quantity and quality, making
possible global-scale studies in climate research, natural hazards,
and Earth's ecosystem. Applied to a global data set such as from
DESDynI, ISCE would enable a new class of analyses at time and
spatial scales unavailable using current approaches.

ISCE is an accurate, extensible, and modular processing
system that i) enables multi-scene analysis by adding new
algorithms, ii) permits user-reconfigurable operation and
extensibility, and iii) capitalizes on codes already developed by
NASA and the science community. The framework incorporates
modern programming methods, including rigorous
componentization of processing codes, abstraction and
generalization of data models, and a robust, intuitive user
interface with graduated exposure to the levels of sophistication,
allowing novices to apply it readily for common tasks and
experienced users to mine data with great facility and flexibility.
The framework is designed to easily allow user contributions,
creating an environment that can extend the framework into the
indefinite future.

I. INTRODUCTION

The objectives of the InSAR Scientific Computing
Environment (ISCE) are to develop an open, modular,
extensible InSAR computing environment for the research
community. The environment incorporates state-of-the-art,
highly accurate algorithms to facilitate InSAR processing for
non-experts and experts alike. To service the community and
promote use, the project will deliver documented algorithms,
formats and interfaces. The specific goal is to create a code
suite that the InSAR community embraces and grows with.

Copyright © 2011 All Rights Reserved

The goals of ISCE are a direct response to the priorities set

by an international community of radar processor developers
and users as determined by two NASA sponsored InSAR
workshops, one convened in 2008 at Stanford University and
the other in 2011 at the Scripps Institution of Oceanography.
The goals of the 2008 workshop were to assess the strengths
and weaknesses of the existing InSAR processing packages at
the time, define the capabilities of the next-generation
processors required by the user community, and set the
standards and structure for new InSAR processor
development. The top requirements for the next generation
radar processing package coming out of the 2008 workshop
were the following: (1) precise and well-characterized
products; (2) flexible and extensible modular code to
encourage modification and improvement by the user
community; (3) and a comprehensive set of user
documentation.

The NASA Earth Science Technology Office funded the
ISCE project through the Advanced Information Systems
Technology (AIST) program to implement these
recommendations. The approach our multi-institutional team
took was relatively straightforward for a software
development project, but perhaps more structured than a
typical research code development. We approached the
development by applying modern software system engineering
techniques and tools for configuration management and
maintenance. We first collected community-based
requirements for InSAR processing methods and generalized
data models, primarily through the 2008 workshop final
report. We then used these requirements to define an object-
oriented framework. With the framework in place, we
populated it with processing modules. Along the way, we are
creating documentation of the framework, modules, and use
cases.

II. THE ISCE ARCHITECTURE

The ISCE architecture was driven by the following key
design principles:

1. Preserve the vast expertise and testing currently
encoded in Legacy Software

2. Make that Legacy Software more lean in terms of the
number of auxiliary tasks it needs to do (such as self
configuration and I/O configuration).

3. Build modern object oriented structures around and
behind the legacy code to manage that code and push
rather than pull user configuration onto that code
before executing that code

4. Implement common functions and services such as
I/O through APIs to allow their implementations to
change and to allow for user configuration and
selection of those functions at run time

5. Build in polymorphism mechanisms to allow user
selections to alter the implementations of major
processing steps and common functions. 	

At the core of the ISCE architecture is two legacy InSAR
processing packages: ROI_PAC (Rosen et al., 2004) and

STD_PROC (Zebker et al., 2010). Both of these software
packages are primarily written in Fortran – mostly using the
Fortran 77 version of the language, with some of the
transitional features leading up to Fortran 90 such as structures
and occasionally dynamic memory allocation – with some of
the programs written in C and with scripts written in Perl
(ROI_PAC) or Python (STD_PROC). ROI_PAC was initially
developed over a decade ago and has been used extensively by
the science community to process InSAR data from several
different international space borne radar platforms such as
ERS, EnviSAT, RadarSAT-1, JERS, ALOS, and TerraSAR-X.
STD_PROC is currently being developed at Stanford
University and is based on advances in the processing
algorithms that came from processors developed for SRTM
and UAVSAR. Although STD_PROC is new, we refer to it
along with ROI_PAC as legacy code because of its pedigree,
and because like ROI_PAC it is received as domain expert
software whose functionality we wish to preserve. Also both
are written in a similar style that is very effective at
accomplishing the processing steps but neither easy for non-
experts to use nor very flexible or extensible for expert
developers to work with. The ISCE architecture seeks to
inject some modern software principles that allow for easier
use and greater flexibility and extensibility.
Components

To accomplish these goals, we componentize the legacy
code by surrounding them with structures that deliver services
to the legacy programs, users and developer. The services
replace legacy code interactions with the external world that
are handled using mostly primitive language features. The
structures that deliver these services are quite different,
requiring legacy code modifications to add new “wiring” to
receive those services.

 Figure 1 shows the architecture of a component that has an
embedded legacy core. The processing components are built
from framework components and properties through either
class inheritance or composition. Configuration and control
parameters flow from a controlling or driving application at
the top into the component initialization method. The
configuration and control parameters are derived from user
inputs, either from the command line or from input files, and
defaults defined in preferences files or within the application
itself. The component itself may also define defaults for
parameters. Defaults can always be overridden by user inputs.

The components, applications, and other support software
involve a mixture of different programming languages and
styles. This multilingual structure requires proper use of
application program interfaces (APIs) for effective
cooperation among languages. The ISCE architecture
preserves legacy radar processing software at the core of each
of our components, as shown in Figure 1. The component core
is not the raw Fortran program, but rather the essential
processing engine with data flow execution management
removed. We use C/C++ as the intermediary between Python
and Fortran because there is a standard Python API that allows

Python and C programs to interact. The C intermediary is
referred to as a binding.

A component by itself does not actually do anything. It
must be instantiated in another type of component called an
application that has the responsibility of collecting the user
inputs and of managing its components from their
initialization to the flow of data through them to their
finalization.
Software

The structure of the ISCE software system is shown in
Figure 2. At JPL, the software configuration is managed using
SVN, and “checking out” the software yields the directory
structure shown in the figure. To build the software, the user
runs SCons, a Python-based build system, rather than the
“configure; make” method. SCons works well building code
written in multiple languages, and is essentially Python-
programmable to handle a range of build situations can occur
on disparate operating system configurations.

The mainline ISCE applications and components are
contained under the Applications and Packages directories.
Packages are collections of logically related Components,
Legacy Cores, and other support software. Current Packages
include: iscesys, which contains the ISCE system or
framework components and properties as well as several APIs;
isceobj, which contains class definitions for several objects
used by the components; mroipac, which contains the
recasting of ROI_PAC into components; and stdproc, which
contains the recasting of STD_PROC into components.
Figure 2 shows a branch called Contrib, where contributed
software can be located without intermingling with the ISCE
distribution.
Polymorphism

An ISCE developer or a user will be able to add software
objects to the framework after the framework is built and user

 Figure 1. Architecture of a component

inputs or default settings can select the new or the old objects
as long as the objects adhere to the correct interfaces. This
dynamic alteration of the software for a processing run is
possible using object-oriented polymorphism design patterns
and greatly enhances the flexibility and extensibility of ISCE.
We are allowing for two types of polymorphism: (1) facility
polymorphism where major components may be morphed at
run-time; and (2) a plug-in type of polymorphism where lower
level, common functions such as implementations of fast
Fourier transforms (FFTs) may be selected across the board at
run-time. Facilities define a task and an interface that are
implemented by a component. Registering a Component as a
Facility indicates the Component as the default Component to
implement the Facility but also alerts the Application to allow
the User to specify an alternate Component at runtime to
implement the Facility.
Provenance

The ability to log and query the pedigree of a particular
piece of processed data, known as “provenance,” is important
to the community. Provenance allows users to keep track of:
the versions of applications, components, and other software
that were used to produce a data product; the configuration
parameters used to initialize those applications and
components; the input data and other output data products at
the time of creation of the data product of interest.
Provenance enables an investigator to explore data by using
different versions of the software or iteratively tweaking
parameters, while keeping a record of what was done at every
step. This record allows the user or colleagues to reproduce
results exactly, by sharing scripts with the community,
facilitating reproducible collaborations and publications.

ISCE supports provenance through database management
and logging of processing steps and meta-data at each step of
the processing chain. Given the python-based object-oriented
methods in ISCE, the code lends itself to being used within
software packages with higher levels of sophistication that
provide provenance capability as well. For example, several
GUI interfaces, such as VisTrails, have complete provenance
management, and easily accept python applications and plug-
ins as modules. This effectively extends the ISCE utility as a
scientific tool with essentially no effort.

III. DESCRIPTION OF THE API SOFTWARE

The ISCE framework contains various elements that support
the ISCE component architecture. We have coded,
documented, and tested the key framework Application
Program Interfaces (APIs) that allow us to control processing
flow among ISCE modules. These APIs are the following:
Image API, Control API, and StdOE API.
Image API

The image API provides a set of library functions that
provide the legacy software and new programs developed by
users with a reliable and versatile way of performing input and
output operations on images. The image API consists of a set
of C++ classes that contain an abstraction of a real world
image as well as concrete methods to access data from sources
(such as, but not limited to, files on disc) and a memory buffer
to hold a given portion of an image that can be passed between
the C++ and Fortran programs. The C++ classes allow for
very general and flexible configuration of the objects
instantiated from them without specific regard for the types of

Figure 2. The structure of the ISCE source directory.

images and memory buffer specifications currently in the
Fortran programs of ROI_PAC and STD_PROC.

We exploit class inheritance mechanisms, so that new data
accessor methods can be layered on top of those currently
available without rewriting code that currently works. The
code has built-in flexible methods for sequential access to full
lines of data, random access by line number, and single pixel
access, supporting a number of band interleaving schemes.
The Image API handles efficient conversion from one scheme
to another on input and output. Machine dependent internal
representations of the numerical values are converted on the
fly so that data files created on one machine can be used in our
software without first creating a new file conforming to the
internal representation of binary data on the machine that is
running the ISCE software. The generality of the Image API
permits fast and efficient cached I/O.
Control API

Generally speaking, modules contain parameters or
attributes that need to be set appropriately before they can
perform their function. The control API is a set of classes,
features and methodologies providing an easy, reproducible,
extensible and reconfigurable way to pass data, and to set and
examine attributes through set and get methods.

All ISCE modules inherit from a ComponentInit base class,
which allows the initialization of the parameters of the
subclass that inherits it by passing an initializer object to it.
The ISCE framework provides a set of default initializers that
permit initialization from file, from a dictionary (an object
consisting of a set of (key,value) pairs) of from another object.
Expert users could provide their own initializers, as long as
they conform to the architecture specifications.

The ComponentInit class provides a set of methods to allow
the user to explore how to use a component, to debug his
usage of the component, and to document the state of the
control parameters through the following built-in capabilities:
(1) determine which variables in the module must be set by the
controlling program (i.e., those parameters that have no valid
default value); (2) determine which variables have default
values and what those default values are so that the user may
have the option to override the default values; and (3) render
the state of the component to a configurable destination such
as to a file or to standard output (i.e., dump the variables and
associated documentation of an object to a specified
destination that may be used and stored by the user to debug a
component or to document the provenance information on the
component’s state).

Another component of the Control API is the Checkpoint
class. The process of check-pointing allows the user to save
the state of the system at a given point during the program
flow, such that the program can be resumed at a given
checkpoint without having to recompute the previous stages.
This feature is important in the event that the process was
interrupted due to an anomaly in the processing or the data, or
because the user chooses to use a different set of processing
parameters for processing past a certain point. For example, a
user may prefer heavier filtering of the interferogram than the

default after seeing the quality of the default result. For this,
there is no need to return to any processing done prior to the
formation of the interferogram.
StdOE API

An essential element of any program suite is the ability to
print informative messages about the status of the processing
(e.g. percent completion, derived parameters that may be of
interest to the user, etc.) and any error messages that occur. In
conventional programming, particularly, in Fortran, coders
insert “write” statements into their code that are sometimes
compiler dependent, such that when compilers change, all the
code needs to be updated. To avoid such tight and brittle
connection of logging messages to the code elements, we have
created a logging API we call StdOE for “Standard Output and
Error.” The StdOE consists in a C++ static class used for
reconfigurable standard output and error. With this API, it is
possible to choose destinations for standard output and
standard error messages. For example the user might choose
to select the terminal window for both of these output streams
or instead send them to separate files, to a network socket, or
to the input of some other process.

IV. DESCRIPTION OF THE NEW CORE PROCESSING SOFTWARE
Repeat pass InSAR forms topographic and displacement

maps from radar data collected at two different times by a
platform such as an orbiting spacecraft. The platform collects
data from the same location on Earth at times t1 and t2 as
illustrated in Figure 3. The spacecraft position at t2 is
separated from its position at t1 by a vector B, which is the
interferometric baseline. The typical processing flow is as
illustrated in Figure 4. InSAR processing depends on precise
knowledge of the position and velocity of the platform at the
time of observation of a pixel at a given range and Doppler
relative to the platform.

The STD_PROC processor at the core of ISCE preserves
the accuracy of its data products by taking advantage of the
improved accuracy of orbit determination now available and
implementing all of the code in a uniform geometric
framework (Zebker et al., 2010). This approach, based on
well-known motion compensation techniques, also facilitates
analysis of a time series of many observations of a particular
location on Earth by its use of a motion-compensated geodetic

Figure 3. Repeat pass InSAR

coordinate system rather than the traditional range/Doppler
coordinate system specific to a given observation, used by for
example ROI_PAC. The coordinate system, referred to as
SCH (in which S is the local along track direction, C is the
cross track direction, and H is the height above the
approximating sphere), is based on a local spherical
approximation of the ellipsoidal Earth. The equations
implemented in the processor are simplified by use of a
spherical earth and a corresponding circular approximation of

the platform orbit. Figure 5 illustrates the motion
compensation geometry, showing the correspondence of an
image pixel location, actual satellite position and the assumed
reference position on the circular orbit. In this approach, the
direction from the satellite to a point on the Earth is
determined through the estimated Doppler centroid. Using the
motion of the satellite on its orbit relative to the reference
track, the position of the satellite is compensated along this
direction back to the reference track as a range correction. A
corresponding phase correction is also applied. The equations
encoded in STD_PROC and hence ISCE are developed in
detail in Zebker et al. (2010) and Gurrola et al (2010).

V. STATUS OF ISCE DEVELOPMENT

The AIST-sponsored ISCE project has completed two
years of development, with one year remaining. The team to
date has succeeded in developing all the basic elements of the
framework as described in Figs 3 and 5; essentially all the

standard ROI_PAC algorithm functionality now exists, but in
a modern framework that will serve as a springboard for added
capability and community involvement.

To begin engaging the community, a follow-on to the
2008 workshop was held in March 2011 at Scripps Institution
of Oceanography. The goals of the 2011 workshop were to
compare and validate the accuracy and performance of the
various non-commercial InSAR processing packages, both
legacy and new, and to generate feedback and suggestions for
further developments. Products from four different InSAR
packages, including ISCE, were compared for several
challenging data sets and recommendations for further
comparisons were made, including incorporation of a few
commercial InSAR packages and simulated data to isolate
differences in results found between the different packages.
ISCE did well in terms of accuracy, speed, and ease of use.
Some found it difficult to install. The use of Python and the
gcc requires a self-consistency to the development
environment that many users do not understand. One of the
key actions for the ISCE team is to provide more complete
descriptions of what constitutes a self-consistent environment,
and provide the tools and information for a user to easily
create one. One of the top action items from the workshop
was to make ISCE available for rapid and wide distribution,
indicating that the development is of interest to the
community.

VI. CONCLUSION

There will be an enormous amount of radar data available to
the research community in the coming years as more and more
space borne international radar systems are launched and the
data become available for use, either in real time or from
historical archives. With the upcoming launch of the

Figure 5. Motion compensation geometry. The actual
satellite position is indicated at coordinate (S0,C0,H0) and
its assigned position on the circular reference orbit is at
(S,0,H) as determined from the look direction to the
imaged pixel at P.

Figure 4. InSAR Processing flow.

European Sentinel-1 spacecraft alone, there will be a great
deal of data that will be useful for repeat pass interferometric
SAR processing. Current tools are nearly all geared to
examining individual frames or areas, and are not general
enough or generalizable enough to allow researchers to
explore the richness of the data in space and time. The ISCE
framework and radar processing software associated with it,
described in this paper, are designed to be extensible and
flexible enough to allow the researcher to ask questions and
formulate new ways to answer them with relative ease in the
environment.
We have released the software for beta testing to a limited
number of users and plan to make wider releases in the
coming year as we work through the process of obtaining a
suitable license for open release to the research community.
We anticipate a documented and usable set of code in the
coming year, with ample time for community feedback, bug
fixes, and refinement during the remainder of the funded AIST
development. And of course, we anticipate that the code will
be sufficiently useful, well documented, and accessible for the
ISCE to far outlive the duration of the AIST program.

VII. ACKNOWLEDGMENT

We thank Albert Chen and Cody Wortham, both PhD
candidates at Stanford University, and Piyush Shanker,
PostDoc at Caltech, formerly PhD student at Stanford, for
their contributions to the Stanford legacy code at the core of
ISCE. The authors would like to thank the Earth Science
Technology Office at NASA for support. This work was
performed at the Jet Propulsion Laboratory, California
Institute of Technology under a contract with NASA, and at
Stanford University under a contract with JPL.

VIII. REFERENCES
Gurrola, E., P. Rosen, G. Sacco, W. Szeliga, H. Zebker, M.

Simons, D. Sandwell, P. Shanker, C. Wortham, and A. Chen
(2010). “InSAR Scientific Computing Environment”. 2010
American Geophysical Union Meeting.

Rosen, P. A., S. Hensley, and G. Peltzer (2004), Updated
Repeat Orbit Interferometry Package released, Eos Trans.
AGU, 85(5).

Rosen, P. et al. (2009). “InSAR Scientific Computing
Environment”. 2009 American Geophysical Union Meeting.
Also presented a summary of InSAR SCE and progress at
the WinSAR meeting at Fall AGU 2009

Zebker, H., S. Hensley, P. Shanker, C. Wortham (2010).
Geodetically Accurate InSAR Data Processor. IEEE Trans.
On Geoscience and Remote Sensing, 48(12).

